版本号 Document Number	SM-YAA4-01
修订号 Revision	01 (PY559)

操作前请阅读此手册! PLEASE READ THIS MANUAL BEFORE OPERATION.

全液控液压盘式刹车装置用户手册 Hydraulic Control Hydraulic Disc Brake

SERVICE MANUAL

北京普世科石油机械新技术有限公司 Beijing PSK New Technology of Petroleum Machinery Co.,Ltd. 全液控液压盘式刹车装置

用户手册

北京普世科石油机械新技术有限公司

前言

本手册讲述了PSK常规系列全液控液压盘式刹车装置的原理、结构、使用方法和维护保养的原则,在使用或维修PSK常规系列全液控液压盘式刹车装置前,请认真阅读本手册,并按照本手册进行正确的安装、使用、保养和维护。

本产品的使用效能和使用寿命,与产品的设计和制造有关,也与用户的合理使用密切相关。我们愿意凭借质量保证体系,为顾客提供高质量的产品,同时也希望操作人员认真阅读本手册,使产品的性能和优势得到最充分的发挥,圆满完成预期的作业。

由于产品的不断改进,本手册中个别内容可能与实际不一致,这些内容不会影响顾客对产品结构和性能的理解,也不会影响顾客的使用。如有疑问,请与我们联系。

随着钻井技术的不断进步,顾客不断会有新的使用要求。我们愿意和您一起,不断改进我们的产品,满足您的特殊使用要求。欢迎您与我们联系。

目录

	概述	
二、	主要技术参数	2
三、	工作原理及结构特征	
	3.1 刹车执行单元	∠
	3.2 液压动力源	<i>6</i>
	3.3 操纵单元	
	3.4 工作原理	9
四、	安装	10
	4.1 安装刹车盘	10
	4.2 安装刹车钳、钳架	10
	4.3 安装液压动力源	10
	4.4 安装操纵单元	10
	4.5 连接液压管路	10
	4.6 连接气路管线	11
	4.7 电路的连接	12
五、	调试	13
	5.1 调试前的准备工作	13
	5.2 调试	13
六、	操作规程	16
	6.1 开机前,准备工作	16
	6.2 操作规程	16
七、	维护与保养	18
	7.1 液面	18
	7.2 油温	18
	7.3 压力表	18
	7.4 滤油器	18
	7.5 蓄能器	19
	7.6 泵组	19
	7.7 防碰天车系统	19
	7.8 开式钳	19
	7.9 闭式钳	20
	7.10 快速接头、液压管线	20
	7.11 电缆插头、控制电缆	20
	7.12 结构件	20
	故障检修	
九、	关键元器件的拆装与更换	24
	9.1 回油滤油器滤芯	
	9.2 管路过滤器滤芯	
	9. 3 高压滤油器滤芯	24
	9.4 油泵	
	9.5 闭式缸的碟簧、密封件	
	9.6 开式缸的密封件	
	9.7 刹车块	
	易损件	
公司]信息	30

一、概述

PSK常规系列全液控液压盘式刹车装置由三部分组成:刹车执行单元、液压动力源及操纵单元。

刹车执行单元和操纵单元之间用液压管线连接,操纵单元又与液压动力源之间通过液压管线连接。

液压动力源为刹车执行单元提供必需的动力;刹车执行单元是制动的执行者,由刹车钳组、钳架、刹车盘三部分组成,其中刹车钳组由 开式钳和闭式钳根据需要组合而成;操纵单元是该装置的控制环节, 它通过控制操作台中的操纵阀组,实现刹车执行单元的动作控制。

PSK常规系列全液控液压盘式刹车装置具有以下五种功能:

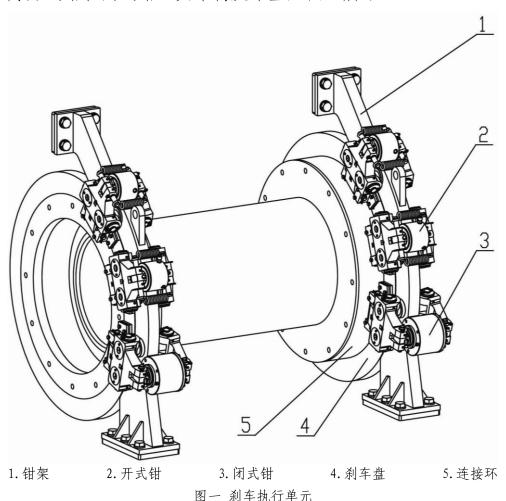
- 1. **工作刹车** 通过操作工作刹车的控制手柄,调节开式钳对刹车盘的 正压力,从而为主机提供大小可调的刹车力矩,满足正常钻进、起 下钻等不同工况的要求。
- 2. **驻车刹车** 当钻机不工作或司钻暂时离开操作台时,拨动驻车刹车 手柄到刹车位,闭式钳刹车,以防大钩滑落。
- 3. **紧急刹车** 遇到紧急情况时,按下紧急刹车按钮,开式钳、闭式钳 全部参与刹车,实现紧急刹车。
- 4. 过卷/防碰保护 当大钩提升重物上升到某位置,由于操作失误或其它原因,应该工作刹车而未实施刹车时,钻机防碰系统会发出信号, 开式钳和闭式钳全部参与刹车,实施紧急刹车。
- 5. 断气自动刹车 系统断气时,紧急刹车自动刹车,以防事故的发生。

二、主要技术参数

基本参数	盘剎型号			PS440/	PS295	PS240	PS165	PS140/	PS75/	PS50/	PS40/	PS35/	
				9000	/6750	/4500	/3150	2250	1800	1350	900	600	
	适用钻机级别				ZJ120	ZJ90	ZJ 70	ZJ50	ZJ40	ZJ30	ZJ20	ZJ15	ZJ10
										XJ1800	XJ1350	XJ900	XJ600
	适用修井机级别				_		_ _		- XJ2250	XJ1600	XJ1100	XJ700	XJ350
		工作刹车转矩(kN·m)				295	240	165	140	75	50	40	35
	ī	庄刹车制动	转矩(k	(N·m)	360	225	130	100	70	60	50	30	25
	紧急刹车制动转矩(kN·m)				800	520	370	265	210	135	100	70	60
		ŕ	刹3	车盘直径	2200	1000	1.050			1450	1400	1400	1100
			((mm)		1900	1650	1600	1500	1450	1300	1200	1100
	执		刹	车盘厚度	75			75/40	60/40				
	行 机 构			(mm)	/5								
			冷	·却方式	水冷/风冷/实心								
		构 刹车钳	刹车钳类型		A2/G/S	A1/G/S	A/	G/S	A/C2/S	C2/C1/S			
			数	工作钳	6	6	6	4	4	2	2	2	2
配置			量	安全钳	4	4	2	2	2	2	2	1	1
参数	液压	系统压力	(MPa))	9	8		7				8	
2 XX		液压站类	型		电控液压站 / 液控液压站 / 组合液压站								
	系				10℃~60℃: HM46# 抗磨液压油								
	が ・	工作介质			-20℃~10℃; HM32# 抗磨液压油								
	-76						-45	℃~-20℃	10# 射	1空液压	油		
	控				电液控制 / 全液控制 / 自动送钻控制								
	制	控制方式											
	单												
	元												
注, 四上会	注。以上参数为其太参考参数。具体配置读上公司技术如联系												

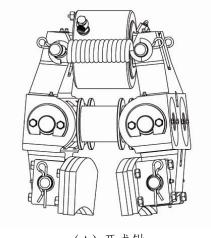
注: 以上参数为基本参考参数, 具体配置请与公司技术部联系。

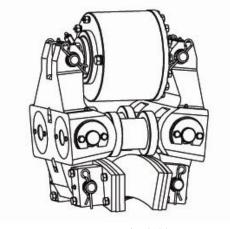
PSK 液压盘式刹车本说明书特定产品


产品型号	PS165/3500		
适用钻机、修井机级别	ZJ50		
工作刹车制动转矩(kN·m)	165		
驻车制动转矩 (kN·m)	85		
紧急制动转矩 (kN·m)	250		
刹车盘直径×厚度(mm)	1650 × 75		
开式刹车钳数量(个)	4		
闭式刹车钳数量(个)	2		
刹车钳类型	KQ-00/BQ-00C		
系统压力 (MPa)	8		
主泵排量	15L/min		
工作介质	夏天: HM46"抗磨液压油		
工作升灰	冬天: HV32 [#] 抗磨液压油		
油箱容积	100L		
装机总电功率	5kW		

三、工作原理及结构特征

全液控液压盘式刹车装置由刹车执行单元、液压动力源和操纵单元三部分组成。


3.1 刹车执行单元


刹车执行单元主要包括刹车钳、刹车盘和钳架三部分,其中刹车钳分为开式钳和闭式钳。其结构及布置如图一所示。

3.1.1刹车钳工作原理

PSK常规型盘式刹车的所有刹车功能都通过刹车钳这一主要部件实施,本盘式刹车的刹车钳包括浮式杠杆开式钳和浮式杠杆闭式钳。 图二为浮式杠杆钳的结构示意图。

(A) 开式钳

(B) 闭式钳

图二 浮式杠杆钳外观图

浮式杠杆开式钳(见图二(A))的工作原理为: 当向钳缸供给压力油时,液压力推动活塞右移,活塞与缸体通过上销轴分别推动左右钳臂的上端向外运动,推动刹车块向内运动,从而将刹车块压在刹车盘上,利用相互间的摩擦力对刹车盘实施制动。可见,开式钳的刹车力来源于液压力,且压力油的压力越高,刹车力越大。

如果进入钳缸压力油的压力减小至零,活塞与缸体通过安装在左右上销轴端部的回位弹簧向内运动,刹车块向外运动与刹车盘脱离接触,刹车钳松刹。

浮式杠杆闭式钳(见图二(B))的工作原理为: 当向钳缸供给压力油时,液压力推动活塞右移压缩碟簧,同时拉动左右钳臂的上端向内运动,带动刹车块与刹车盘脱离接触,刹车钳松刹。当钳缸泄油时,碟簧力推动活塞左移,通过钳臂使刹车块压在刹车盘上,产生的摩擦力实施刹车。可见,闭式钳的刹车力来源于碟簧的弹簧力。

3.1.2 刹车盘

刹车盘是刹车系统的核心部件之一,与刹车块组成刹车副。一般 每台产品配备两个刹车盘,安装在绞车滚筒两端。有些新型钻机绞车 一台只配备一个刹车盘,安装在绞车滚筒的一端。

按结构形式分为: 水冷式、风冷式和实心刹车盘三种。

水冷式刹车盘内部设有水冷通道,在刹车盘内径处设有进、出水口;
 外径处设有放水口,用来放尽通道内的水,以防止寒冷气候时刹车盘冻裂;正常工作时,放水口用螺塞封住。刹车系统工作时,给刹

车盘通冷却循环水,以平衡刹车副摩擦产生的热量。

- ▲ 风冷式刹车盘内部有自然通风道,靠自然通风道和表面散热。
- ◆ 实心刹车盘靠表面散热,主要用于修井机和小型钻机。

3.1.3 钳架

钳架是刹车执行单元的基座,开式钳及刹车钳均安装在该基座上。 对于双盘式结构,需配备两个钳架,安装在绞车的底座上,位于滚筒 两侧的前方。对于单盘式结构,需配备两个钳架,安装在绞车底座上, 位于滚筒的一侧。

3.2 液压动力源

液压动力源包括:油箱组件、泵组、控制块总成、加油组件和电 控柜等。其液压原理参见图三。

3.2.1 油箱组件

油箱组件包括油箱、吸油阀、放油阀、液位温度计、冷却器等元器件,其中,吸油阀门的作用是在维修油泵时,关闭该阀,使油箱与油泵吸油口断开,防止液压油外泄。正常工作时,处于开启状态。放油阀门是为了更换液压油而设,正常工作时,处于关闭状态。液位温度计供观察油箱液面高低及油箱油温。冷却器为风冷却器,用来平衡整个系统的发热。

3.2.2 泵组

泵组为液压系统的心脏。系统配备两台同样的柱塞泵,分别由防 爆电机驱动,一台工作,另一台备用。

3.2.3 控制块总成

主要由:油路块、蓄能器、截止阀、单向阀、安全阀和高压滤油器等元器件组成。

蓄能器可降低液压回路的压力脉动,并在泵无法正常工作时提供一定的储存能量,保证开式钳仍能正常制动 4~6次。

截止阀是用来释放蓄能器油压的,在正常工作时,截止阀一定要 关严。否则,系统压力将建立不起来。

单向阀的作用是把两台泵的出油口隔开、保持蓄能器的油液不回流,同时形成三个相互独立而又相互联系的油路。

安全阀是一个溢流阀,起安全保护作用。

高压滤油器过滤系统高压油, 保证液压系统的清洁。

3.2.4 加油组件

加油组件由一台手摇泵、一台过滤器组成。油箱加油时,必须通过加油泵组完成,以保证油液的清洁度。

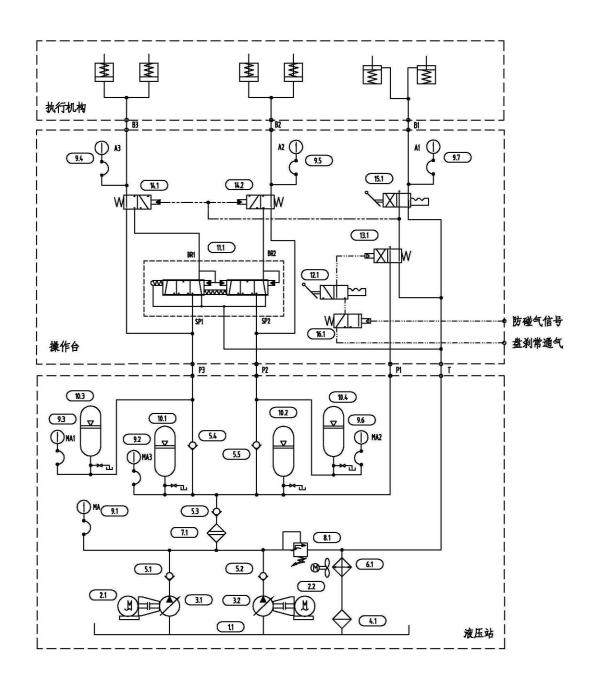
3.2.5 电控柜

液压动力源的电控柜主要用来控制电机和加热器的起、停,电控柜采用隔爆处理。

3.3 操纵单元

全液控盘式刹车的操纵单元包括:操作台架、操纵阀组及操纵执行件等。

3.3.1 操作台架


操作台架为一个钢质结构件,用以安装操纵阀组等相关元件。

3.3.2 操纵阀组

操纵阀组安装在操作台架里,它包括工作刹车阀组件、驻刹车阀组件、紧急刹车阀组件和压力表等。

3.3.3 操纵执行件

操纵执行件包括工作制动刹把、驻刹车手柄和紧急刹车按钮。

- 1. 油箱2. 电机3. 油泵4. 回油滤油器5. 单向阀6. 冷却器7. 高压滤油器8. 安全阀9. 压力表10. 蓄能器

- 11. 比例减压阀 12. 手动换向气阀 13. 气控换向阀 14. 液控换向阀

- 15. 手动换向阀
- 16. 气控气阀

图三 液压系统原理图

3.4 工作原理

3.4.1工作刹车

拉动工作制动刹把,控制比例减压阀(11),比例减压阀(11)输出相应的压力值的液压油进入左右路开式钳,实现工作刹车。随着制动刹把的角度改变,开式钳的刹车力也相应改变,当制动刹把角度最大时,开式钳的制动力也达到最大。将制动刹把推回原始位置,开式钳油缸压力为零,开式钳松闸。

3.4.2 驻刹车

驻刹车操作为通过一个手动换向阀的动作控制油路的通断。拨动手柄到"刹"位,闭式钳刹车;拨动手柄到"松"位,闭式钳松刹。解除驻车制动时,必须先拉动"工作制动刹把"刹住载荷,然后将驻刹车手柄拨动到"松"的位置,松开闭式钳。

3.4.3 紧急刹车

紧急刹车操纵件为一个急刹按钮,操纵手动换向气阀(12)通断气。按下按钮,手动换向气阀断气,系统处于紧急刹车状态;提起按钮,手动换向气阀通气,解除紧急制动状态。控制的基本原则是断气刹车。解除紧急刹车时,必须先拉动"制动刹把"刹住载荷,然后才可提起紧急刹车按钮,解除紧急制动。

3.4.4 过卷/防碰保护

当大钩提升重物上升到某位置,由于操作失误或其它原因,应该工作刹车而未实施刹车时,天车附近处安装的气动行程阀(或绞车上安装的过卷阀)由于外力碰撞而动作,使气路接通,由过卷/防碰阀输出的气信号控制气控换向气阀换向,切断气源,实现紧急制动。

四、安装

4.1 安装刹车盘

- 4.1.1 刹车盘的工作表面对滚筒轴的跳动不大于0.3mm。
- 4.1.2 刹车盘清理干净,摩擦面严禁沾染任何油污。
- 4.1.3 对于水冷式刹车盘,还需连接进、出水管。

4.2 安装刹车钳、钳架

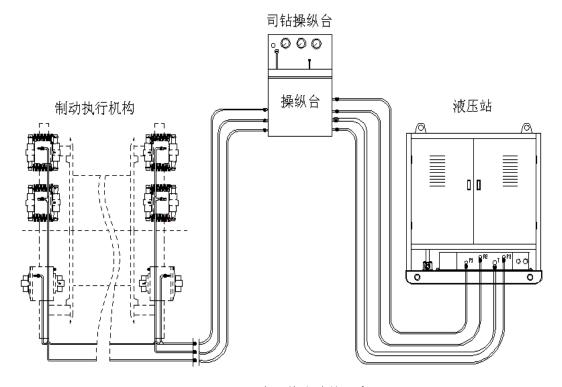
- 4.2.1 将上、下过渡板紧固于钳架上。
- 4.2.2 将刹车钳安装于钳架上,应转动灵活、无卡阻、无别劲现象。 安装刹车钳时,需用放油阀给调节油缸放油,使两个刹车块之间的距 离最大,以便钳体的安装。
- 4.2.3 整体安装到绞车。

安装找正要求:

- (1) 刹车盘外圆与钳架内圆之间的间隙应均匀(3-5mm),不允许与钳架有干涉现象。
- (2) 钳架与刹车盘应平行、对中, 偏差为±1mm。
- (3) 刹车块应包容在刹车盘之内。
- (4) 所有刹车块应平行、完整的贴合刹车盘,贴合面不少于75%。
- (5) 调整找正后,分别将上、下过渡板焊接在绞车底座和横梁的设计位置。

4.3 安装液压动力源

将液压动力源安装于设计位置,该位置应方便对液压动力源的操作、检查和维护。


4.4 安装操纵单元

将操纵单元安装于设计位置,该位置应方便司钻对刹把及刹车按 钮的操作,并方便连接液压管线。

4.5 连接液压管路

液压管路主要由高压软管、快速接头、管夹等组成。液压管路的

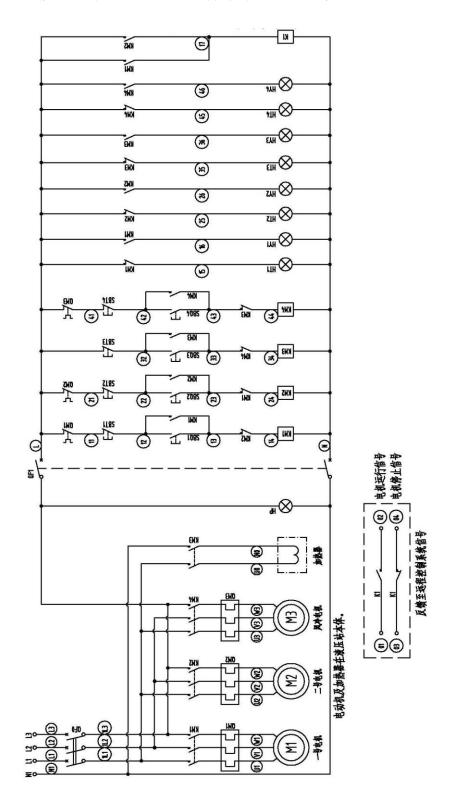
连接就是用高压软管将液压动力源和操纵单元、操纵单元和刹车执行单元连接成一个完整的液压系统。在需要拆开运移的地方,设有快速接头,以方便拆卸。二者的连接见示意图四。

图四 液压管线连接示意图

(1) 安装前要注意所使用管线内洁净,金属管道内无锈蚀,管接头要安装密封件,应严格按照油口标记连接液压管线。

! 警告!

刹车执行单元到液压动力源间的管线请严格按照油口标记连接,如管线连接错误,将会导致盘刹无法正常刹车,可能造成重大安全事故!


- (2) 保证快速接头在工作状态不受外力及重力的作用,不得带压插拔, 拔下后须用护帽封堵;插接时,注意清洁,不得虚接。
- (3) 液压管路间隔1.5~2米应有管夹固定。
- (4) 管路布置应位于安全地带,避免损伤。

4.6 连接气路管线

气路管线的连接就是将过卷阀的气信号与操作台的气动接口连接 好。

4.7 电路的连接

液压动力源电控柜的接线请参照液压动力源电控原理图五接线。接线的插头或插座应符合相关技术标准和安全防爆规范。

图五 液压动力源电控原理图

五、调试

5.1 调试前的准备工作

- (1) 检查管汇的连接,确保无误。
- (2) 检查油箱液面。
- (3) 检测蓄能器充氮压力,确保充氮压力为4MPa。
- (4) 开启吸油口截止阀、柱塞泵泄油口截止阀;关闭蓄能器组截止阀。 若使用场合不需冷却器工作,则将冷却器旁路截止阀开启;若需要 冷却器工作,则将冷却器旁路截止阀关闭。
- (5) 点动电机,检查旋转方向是否正确(柱塞泵旋向为顺时针,即按泵上红色箭头方向)。

5.2 调试

- (1) 启动电机。
- (2) 调定系统额定压力、最大压力 调节步骤如下:
 - A. 启动一台泵电机组。
 - B. 松开安全阀螺帽并按顺时针方向旋转,调节至大约3/4的位置。
 - C. 拆下泵的调压阀保护帽,松开泵的调压阀螺帽。用内六方扳手顺时针转动螺钉以增大压力。观察系统压力表读数,到12MPa时为止。如果调节的同时,压力停止上升,则转动安全阀少许。交替调节安全阀和柱塞泵调压阀,直到压力表显示为12MPa。
 - D. 向下调节安全阀,到压力表读数为11.5MPa时拧紧安全阀螺帽。
 - E. 重新向下调节泵的调压螺钉,系统压力表读数保持额定压力值 为止。拧紧螺帽,装上保护帽并拧紧。

! 注意!

液压动力源出厂前,最大压力已调节好,无特殊情况,严禁调节。

- (3) 观察液压动力源上的压力表,是否稳定在调定值。
- (4) 排气: 把排气管线接在油缸上的排气用的测压接头上, 轻拉工作制动刹把, 使开式钳油缸稍微上压, 等排气管线的另一端排出的油液

不再含有气沫,松开刹把,拆下排气管线,排气工作完成。用上述方法逐个给开式钳油缸排气。在油缸有压时,按同样方法给闭式钳油缸排气。

- (5) 拉下工作制动刹把,左右钳压力到达最大值,抬起紧急刹车手柄, 驻车手柄抬起到"松"位,这时所有压力表都是系统压力值,然后 停机,保压10分钟;观测除液压动力源系统压力表外其他任何压力 表,若压力表值不变,则系统正常;若压力表值减小,说明系统有 渗漏,应及时解决。
- (6) 调节刹车钳刹车间隙: 开式钳钳缸的油压为零而闭式钳油缸的油压为最大的情况下, 刹车块与刹车盘之间的距离, 称为刹车间隙。开式钳的正常刹车间隙(单边)值为1至2毫米; 闭式钳的正常刹车间隙(单边)值为0.5至1毫米。超过正常刹车间隙时, 需要进行调节。刹车间隙的调节步骤如下:
 - A. 拧下单向注油阀上的丝堵,接上已注入清洁液压油的专用注油枪,其中的垫圈须套上。
 - B. 旋转注油枪手把,将油注入,调节柱塞向外移动,观察刹车间隙的变化,直至达到合适间隙(一般情况下,开式钳刹车间隙调为1毫米,闭式钳的调为0.5毫米)。
 - C. 卸下注油枪、盖上并拧紧该丝堵,并注意加放组合垫圈。

! 注意!

在调节刹车间隙前,确保开式钳油缸油压为零,闭式钳油缸油压为最大!

- (7) 缓缓拉动"工作制动刹把",检查左、右工作制动油路压力是否平稳上升,开式钳动作是否灵敏、响应是否迅速。反复操作几次,确保性能可靠。
- (8) 贴磨刹车块。旋转刹车盘,缓缓拉动"工作制动刹把",使刹车块 对刹车盘贴磨,反复多次。
- (9) 新刹车块须贴磨到接触面积达75%以上才能使用。贴磨时应注意控制刹车油压,一般在3MPa下磨合。
- (10) 检查防碰装置;

- (11) 现场安装调试完成后,正常使用前,必须使油泵运行10~30分钟,并反复操作"刹把"几次。同时检查液位、油路等系统各处是否正常,特别是油箱液位,应保持在最高和最低液面标志之间。
- (12) 一切正常后,才可以使用。

六、操作规程

6.1 开机前,准备工作

- (1) 检查所有外围电源接线是否正确;
- (2) 检查各管路连接是否正确;
- (3) 开启吸油口阀门、柱塞泵泄油口阀门;
- (4) 关闭蓄能器组回油阀门;
- (5) 闭合电控箱空气开关QM1;
- (6) 接通外部电源;
- (7) 开启气源。

! 警告!

开机前,必须确保柱塞泵吸油口和泄油口的截止阀都已经打开, 否则将造成柱塞泵的严重损坏。

6.2 操作规程

- (1) 将工作制动刹把、紧急刹车按钮、驻刹车手柄复位,即:工作制动 刹把处于"松"位,紧急刹车按钮处于"刹"位,驻刹车手柄处于 "刹"位;
- (2) 启动电机,此时系统处于紧急制动状态。
- (3) 解锁: 先拉动工作制动刹把, 使其处于"刹"位以刹住载荷; 然后 拨动驻刹车手柄至"松"位, 提起紧急刹车按钮, 使其处于"松" 位。
- (4) 工作制动: 拉动 "工作制动刹把"即可进行工作刹车。下钻时,刹车手柄预轻拉一些,使刹车块轻触刹车盘。以便减少制动响应时间,避免溜钻现象。

! 注意!

下放钻具,特别在下放较重的钻具时,需要辅助刹车配合使用。即,必须利用盘式刹车和辅助刹车的组合能力来安全下放钻柱和套管。任何时候都不允许将钻具自由下降。刹停制动前,必须先连续减速,以保证操作的安全性,减少制动动负荷,提高刹车系统和整个钻机设

备的使用可靠性和使用寿命。

! 警告!

起下钻时,要自始至终保持辅助刹车与绞车相连。否则,可能会减少盘式刹车的使用寿命,或由于速度太快引起动载过大,造成财产 损坏、人身伤害甚至死亡!

(5) 驻刹车:拨动驻刹车手柄至"刹"位,实现驻刹车。转换到工作刹车时,必须先拉动工作制动刹把,使其处于"刹"位以刹住载荷,再拨动驻刹车手柄至"松"位,解除驻刹车,然后进行工作刹车的正常操作。

! 注意!

驻刹车只有闭式钳参与刹车。为了确保闭式钳油缸内大刚度碟簧有足够的弹力,每12个月至少更换一次碟簧组。

! 警告!

司钻离开司钻位置时,必须应用驻刹车悬停住钻具。当需长时间 悬停重载钻具时,必须使用卡瓦,严禁运用盘式刹车长时间悬持重负载。

(6) 紧急刹车:按下紧急刹车按钮,实现紧急刹车。转换到工作刹车时, 必须先拉动工作制动刹把,使其处于"刹"位以刹住载荷,再提起 紧急刹车按钮,解除紧急刹车,然后进行工作刹车的正常操作。

! 警告!

正常起下钻过程中,特别在快速起下钻过程中,严禁操作驻刹车手柄、紧急刹车按钮。否则将造成钻机设备的严重损害。

七、维护与保养

由于盘式刹车装置应用了液压系统,使得它比传统的带刹车要复杂得多。特别是对污染物敏感的液压泵、液压阀及液压油缸等高性能元器件的引入,使得盘式刹车装置比带刹车需要更精心地维护。盘式刹车装置维护的重点在液压回路和刹车钳油缸上。下面所提到的项目以及保养计划所列的内容,在使用中均应进行例行保养。

7.1 液面

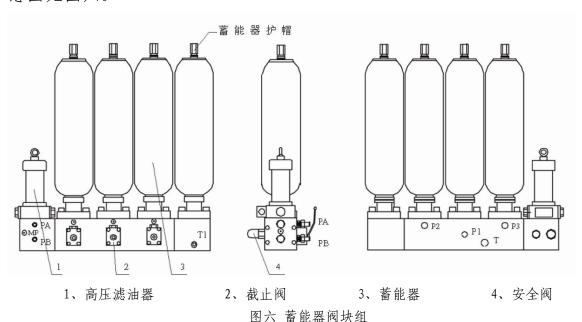
必须经常检查液面并及时补油。当系统中的液面减少到最低液面以下时,可能引起温升、不溶解空气积聚、泵因气穴而失效、电加热器外露而引起局部温度升高,使油液分解变质,从而引起系统故障。液面下降,说明有渗油或漏油的地方,要及时检查,及时维修。

7.2 油温

液压油的工作温度,允许最高值为70℃,因为更高温度会加快油液的老化,并缩短密封件和软管的寿命。必须经常监测油箱中的油液温度。油温逐渐升高,表明液压油可能被污染或形成胶质,或柱塞泵磨损。油温突然升高是报警信号,应立即停机检查。

7.3 压力表

经常观测液压动力源上压力表的压力值,特别是系统压力表,压力应当稳定于设定值。


7.4 滤油器

回油滤油器带有目测式堵塞指示器,指针在绿区时,滤芯正常; 黄区时,轻微堵塞;红区时,严重堵塞,必须清洗滤油器壳体并更换 滤芯。每天在工作温度达到正常值时,至少进行一次检查。或者每当 交接班时,下一班司钻检查一次。高压滤油器带有目测式堵塞指示器, 红色柱塞顶出时表示已堵塞,必须清洗滤油器壳体并更换滤芯。每天 在工作温度达到正常值时,至少进行一次检查,或者每当交接班时, 下一班司钻检查一次。但在温度上升期间可能因为流动阻力较大而使 红柱塞顶出, 要注意区别。

空气滤清器只用于当油箱液面升降时过滤进出油箱的空气。每隔一至三个月检查并清洗或更换一次滤芯。

7.5 蓄能器

必须经常检测蓄能器的充气压力。检测时,停机并卸掉蓄能器内的油压,拆下外护帽及内护帽,连好充氮工具,轻拧旋钮,测量压力。若压力不足4MPa 时,把该接头连到氮气瓶上,拧下旋钮即可充气。卸压时,打开所有的截止阀,即能释放蓄能器的油压。蓄能器阀块组示意图见图六。

7.6 泵组

检测泵组,必须保持两台泵组都处于良好的工作状态。

7.7 防碰天车系统

过卷/防碰阀应经常检测,确保其性能可靠。特别在冬季,压缩空气里可能含有水分,气路因天气寒冷而发生结冰堵塞现象,引起防碰失灵。防碰系统需每天试用一次,确保能够正常工作。

7.8 开式钳

在交接班时需检测刹车块的厚度以及油缸的密封性能。随着刹车块的磨损,需及时调节刹车间隙,当刹车块厚度仅剩18mm时,必须更

换。

7.9 闭式钳

需经常检测松刹间隙(至少一周一次)、刹车块的厚度以及油缸的密封性能。如果刹车盘与刹车块之间的间隙大于1mm,必须调整到松刹间隙为0.5mm左右;当施行紧急刹车操作后,也必须重新检查调整松刹间隙。当刹车块厚度磨损到只有18mm时,必须更换。

! 注意!

请及时调整闭式钳的松刹间隙,否则,可能发生紧急制动或者驻车制动失灵事故。

! 注意!

为了确保闭式钳的使用可靠性,油缸内碟簧组每12个月至少更换 一次。

7.10 快速接头、液压管线

每天检查所有快速接头二次,确保连接良好。特别移动管线或意外碰到管线后,严格检查液压管线是否损坏,快速接头是否虚接,确 保液压管线无损伤、快速接头连接良好。

7.11 电缆插头、控制电缆

每天检查所有电缆插头二次,确保连接良好。特别在移动电缆或意外碰到电缆后,严格检查控制电缆是否损坏,插头是否虚接,确保控制电缆无损伤、插头连接良好。

7.12 结构件

对于结构件的检查保养主要是指制动钳的杠杆钳臂、销轴、油缸、钳架、刹车盘、接头以及所有紧固件,应检查这些零件是否损坏、变形、裂纹和其它可能存在的问题。

- ◆ 检查所有紧固件是否松动,并及时紧固。
- ◆ 刹车盘的保养检查要点是:
- (1) 磨损: 刹车盘允许的最大磨损量为10mm(单边5mm)。应定期检查测量每个刹车盘工作面的厚度。

- (2) 热疲劳龟裂: 刹车盘在制动过程中因滑动摩擦而产生大量热量使盘面膨胀, 而冷却时又趋于收缩, 这样冷热交替容易产生无规则疲劳应力裂纹——龟裂属正常现象。随着使用时间的延长, 如果最初的微小应力裂纹扩展较大时, 应引起足够重视, 并采取修补措施。例如可以用工具沿裂纹处磨掉一些, 以便检查裂纹深度, 对裂纹进行焊接修补, 最后用砂轮打磨平整。
- (3) 油污:工作盘面上不允许沾染或溅上油污,以免降低摩擦系数,降低刹车力,以致造成溜钻事故。但滚筒在运动过程中,钢丝绳上的油有时难免会飞溅到刹车盘的工作面上,因此要经常检查清除。
- (4) 循环水: 对于水冷式刹车盘, 在使用过程中, 应经常检查冷却循环水, 确保冷却循环水存在, 并管线畅通。

! 注意!

若水冷式刹车盘工作时不通冷却循环水,会大大降低其使用寿命, 使刹车盘更容易出现裂纹。

冬季位于寒冷地带,钻机不工作时,务必将刹车盘中的冷却水排尽,避免盘内结冰将盘冻裂。

- ◆ 检查焊接件,特别是钳架、背板的焊缝是否有裂纹、腐蚀等问题, 如有必要则要维修或更换。半年至少检查一次。
- ◆ 检查活动部件是否有粘连现象,特别是杠杆销轴处。

保养计划表

序号	检查内容	要求	保养周期		
		最高液面以下,最低液面以上。加油时,			
1	液位	须从手摇泵加油口加 L-HM46 抗磨液压油或			
		L-HV32 低温抗磨液压油			
2	温度	油温不高于 60℃	每班		
3	系统压力	参考参数表			
4	滤油器	堵塞指示器的指针应在绿色区域			
5	泵组运转声音、温度	无异常噪音、高温			
6	防碰天车系统	触动防碰阀并确保刹车设置正确			
7	油缸密封性	应无滴漏			
0	X1 + 11, 27 m/s	工作钳: 1~2mm			
8	刹车块间隙	安全钳: 0.5~1mm			
9	刹车块厚度	最小厚度 18mm	毎天−−		
10	各管线及接头	密封良好无渗漏、无损坏			
11	快速接头	无渗漏、损坏、虚接			
1.0	各销轴是否粘连 无载下推、拉、转各销轴并确认移动自由				
12	无粘连		每周		
13	蓄能器预充压	充氮压力应为 4MPa			
14	所有固定螺栓	检查并紧固所有固定螺栓、螺钉	1 个月		
15	拆检清洗杠杆和销轴	清洗刹车粉尘更换损坏零件			
16	刘子也许且友到	允许最大磨损厚度 10mm, 热疲劳裂纹不得			
	刹车盘磨损、龟裂	影响强度和漏水,否则应更换			
17	钳架焊缝	缝 检查焊缝是否有裂纹及固定螺栓			
18	结构检查				
19	安全缸碟簧	更换全部碟簧	12 个月		

八、故障检修

下表给出了一些潜在的故障现象和可能引起的故障原因,供检修时参考。

现象	原因	处理措施
	柱塞泵、系统溢流阀设置不正确	重新设置
	柱塞泵、系统溢流阀工作不正常	检查、维修或更换
系统压力或工作	油箱液位太低	补油
压力不正常	油路中有空气	排气
	油滤被堵塞	清洗或更换滤芯
	压力表指示不正确	检查、调整、更换
	系统溢流阀溢流	重新设置
江州八古	系统溢流阀	检查、维修或更换
油温过高	油箱液位太低	补油
	环境温度过高	暂停工作或降温
	油箱液位太低、油温低	补油、加温
	由于吸入和回油箱接头松动而使泵系统有气	拧紧接头、排气
噪音过大或振动	柱塞泵与电机连接松动或有缺陷	检查、修理
	柱塞泵与电机轴不对中	检查、修理
	柱塞泵与电机底座松动	紧固
	系统压力、工作压力过低	检查柱塞泵、系统溢流阀、减
		压阀的设置及状况
刹车钳刹车力	油滤被堵塞	清洗、更换
不足	蓄能器充氮气压力过低或漏失	维修、重新充氮气
小 龙	司钻阀堵塞或出现故障	清洗、修理或更换
	调节刹车间隙的注油系统有气或密封不严	排气、解决密封问题
	液压油漏失	检查、修理并补油
	销轴润滑不良	检查、修复或更换轴瓦
刹车钳臂运动不	刹车粉尘在销钉和销孔堆积	清洗
灵活	销轴过度腐蚀	更换
	相关部件损坏	更换
开式刹车钳释放	回油管路阻流	检查、疏通回油管路
缓慢	回位弹簧失效	更换

九、关键元器件的拆装与更换

! 注意!

- ◆ 在维修液压动力源或管线之前,一定要先停泵,卸掉蓄能器的压力, 否则,可能会造成人身伤害!
- ◆ 维修液压系统时,必须特别注意保持清洁,因为污染物是液压系统 发生故障的重要因素。松开螺纹之前要先把其外面清理干净。用清 洁的护盖把通入系统内部的所有开口封好,以防污染物进入系统。 在工作中应十分注意不要污染液控系统。

9.1 回油滤油器滤芯

先把回油滤油器上盖按逆时针松开。再拆下整个滤油器,取出后, 拆下上盖,取出旧滤芯。用煤油清洗滤油器内部,晾干。放入新滤芯, 拧上上盖,再装好整个滤油器。

9.2 管路过滤器滤芯

把管路过滤器下部按逆时针拆下,换上新的滤芯。

9.3 高压滤油器滤芯

把高压滤油器拆下,用扳手把上盖打开,取出旧滤芯,用煤油清理干净壳体内部,晾干。装上新滤芯,装上上盖,再把整个滤油器按原样装好。

! 注意!

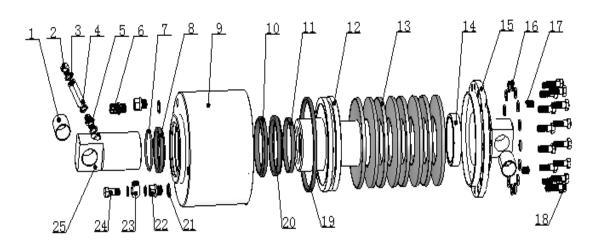
滤油器的滤芯只能更换新滤芯,严禁旧滤芯清洗后再用!

9.4 油泵

更换一台泵时,另一台泵可以正常工作,蓄能器可以不卸压。关闭泵的吸油、回油管路上的截止阀,防止油箱里的油流出。拆下出油管线及接头、吸油管线及接头、回油管线及接头。拆下联接泵与电机的两个螺钉,把泵取出。检查联轴器是否失效,若能用,把泵上的联轴器拆下,装到新泵上;若不能用,需把包括电机一端的一套连轴器都换下。然后把新泵安装好,把吸油管线及接头、出油管线及接头连好。把内泄回油管接口对住泵的内泄回油口,打开截止阀,给泵的壳

体充满油,再把管线接好。打开吸油管路上的截止阀。检查无误,进行泵压调试。

! 注意!


- ◆ 连接管线、接头时,必须把 0 型密封圈、组合垫圈按技术要求安装好,否则,将引起渗漏油。
- ◆ 安装泵的联轴器时,严禁用锤子敲击。应当在轴与孔、键与键槽对 正后,稍微用力推进即可。否则,将引起泵的损坏。
- ◆ 泵启动前,必须给泵的壳体充满油,把吸油、回油管路上的截止阀 打开,否则,将引起泵的严重损坏。

9.5 闭式缸的碟簧、密封件

碟簧的使用寿命为一年。使用一年后,必须更换,碟簧应成组更换,不允许只更换其中几片。在检修时应注意每片碟簧的装配次序,不能混乱或与其它组碟簧相调换。油缸有漏油现象,说明密封圈已失效应更换。

碟簧和密封件的更换方法及步骤如下:

- (1) 在有压状态下,调整调节柱塞使刹车钳开口最大,然后转换到无压 状态,拔掉快速接头;再拆下油缸两端的销轴,将油缸整体取下, 用煤油把外部清洗干净;
- (2) 按图七所示步骤拆下油缸的各零件;

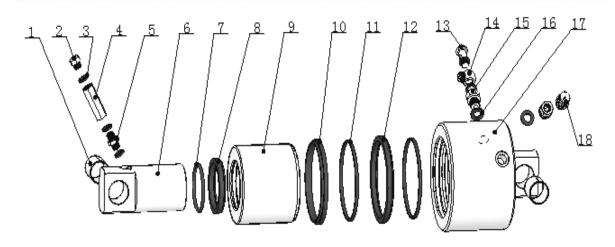
- 1、轴瓦
 2、螺塞
 3、组合垫圈14
 4、单向注油阀
 5、注油阀接头

 6、排气测压接头
 7、0型密封圈
 8、BA型密封圈
 9、缸体
 10、BA型密封圈

 11、F3型导向带
 12、活塞
 13、碟簧
 14、导向套
 15、缸盖

 16、弹簧垫
 17、螺塞
 18、闭式缸螺栓
 19、C2型密封圈
 20、A5型防尘圈

 21、组合垫圈18
 22、空心接头
 23、绞接头
 24、绞接螺丝
 25、调节柱塞


 图七 闭式缸的拆装
- (3) 用煤油洗净每一片新碟簧,并晾干,再用充足的润滑油脂均匀地涂抹在每一片碟簧上。等清洗后的油缸、油缸盖、活塞、导向套等晾干后开始安装。
- (4) 安装好缸体内新的防尘圈、密封圈、导向带;
- (5) 安装好活塞上的新的导向带、密封圈;
- (6) 严格按照规定的碟簧装配关系把新碟簧组装好:第一片大口向下,第二片大口向上,第三片大口向下,第四片大口向上,第五片大口向下,第六片大口向上,第五片大口向下,第六片大口向上,然后装上缸盖;
- (7) 安装活塞时,注意导向带。先加一些液压油,一人按住活塞,另一 人用铜棒轻击活塞,把活塞装到位。
- (8) 安装油缸盖,把螺栓对称均匀地拧紧,用扭力扳手上紧螺栓,均匀上紧(100~120 N·m)。
- (9) 把油缸总成安装到原位。连好管路,然后调整刹车间隙。

! 注意!

装配过程中注意保持清洁, 防止将密封圈刮伤或碰坏。

9.6 开式缸的密封件

- (1) 卸掉油缸内油压,调节柱塞的油液至刹车间隙最大,活塞回位后, 拔下快速接头、回位拉簧,拆下弹簧卡圈,把销轴拆下,取下油缸 总成;
- (2) 把油缸总成用煤油清理干净;
- (3) 按图八所示步骤拆下油缸的各零件;

- 1、轴瓦
- 2、螺塞
- 3、组合垫圈14
- 4、单向注油阀
- 5、注油阀接头

- 6、调节柱塞 7、0型密封圈 8、BA型密封圈
- 9、活塞
- 10、A5型防尘圈

- 11、F3型导向带 12、BA型密封圈
- 13、绞接螺丝 14、绞接体
- 15、空心接头

- 16、组合垫圈 17、缸体
- 18、排气测压接头

图八 开式缸的拆装

- (4) 先拆下油缸的放气螺塞, 拔出活塞和调节柱塞;
- (5) 取下油缸内的旧导向带、密封圈和防尘圈;
- (6) 用煤油清洗活塞及缸筒等,清洗干净并晾干;
- (7) 把导向带及新密封圈、导向带、防尘圈装在缸筒内;
- (8) 在油缸内壁上均匀涂一些液压油,把调节柱塞和活塞装进去(注意 导向带勿掉下来);
- (9) 把油缸总成按原样装回原处,连好油路,调整好间隙。

9.7 刹车块

刹车块由于磨损或其他原因失效时,必须更换。否则,容易发生溜钻、顿钻事故。

更换刹车块的准备工作:

- ◆ 闭式钳:必须在给压状态下,调节调节柱塞使刹车间隙开到最大, 然后卸掉油缸内压力;
- ◆ 开式钳:必须在无压的状态下,使活塞复位,用放油阀放掉调节柱 塞内的油,使调节柱塞完全回位。

把连接刹车块的8个螺栓拧下后,即可将旧刹车块取下。依次把需更换的旧刹车块全部拆下。取下刹车块时,先取最上部或最下部刹车钳的刹车块,沿圆周方向把刹车块依次取出。再依次按反方向把新刹车块装上连接好。

! 注意!

新刹车块更换好后需重新调整刹车间隙。

更换新刹车块必须成套更换。

更换新刹车块后必须对刹车块进行贴磨,达到75%贴磨面。

十、易损件

易损件明细表如下:

序号	名称	规格 (代号)	备注
1	刹车盘		根据盘刹编号
2	刹车块	KQ-21/BQ-22	
3	0型密封圈	BG-81	图七-7
4	BA 型密封圈	BG-82	图七-8
5	BA 型密封圈	BG-89	图七-10
6	F3 型导向带	BG-88	图七-11
7	碟簧	BG-47	图七-13
8	C2 型密封圈	BG-86C	图七-19
9	A5 型防尘圈	BG-87	图七-20
10	0型密封圈	KG-81	图八-7
11	BA 型密封圈	KG-82	图八-8
12	A5 型防尘圈	KG-83	图八-10
13	F3 型导向带	KG-84	图八-11
14	BA 型密封圈	KG-85	图八-12
15	高压滤油器滤芯	104050311	
16	管路过滤器滤芯	104050511	
17	回油滤油器滤芯	104050211	
18	复位弹簧	KQ-48	

公司信息

公司售后服务信息:

公司名称: 北京普世科石油机械新技术有限公司

通讯地址:北京市海淀区学清路18号(北京机电研究所)

1栋12层1200室

邮政编码: 100083

服务电话: 010-82755979

销售电话: 010-82310588

传真电话: 010-82413899

公司网址: www.psk.com.cn

公司邮箱: bjpsk. support@psk. com. cn